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Abstract—In this paper, a bifurcation problem for a solid sphere subjected to a monotonically
increasing, radial, tensile, dead load p at its outer boundary is examined. The material is assumed
to obey a finite strain version of J,-flow theory. One solution to this problem, for all values of p,
corresponds to a homogeneous state. However, for a certain critical range of p, there is in addition,
a second possible configuration, this one involving an internal spherical cavity. The classical
infinitesimal strain theory of plasticity does not exhibit such a bifurcation.

1. INTRODUCTION

Ina recent paper| 1], a class of bifurcation problems for the equations of non-linear elasticity
were examined by Ball. These bifurcation problems are concerned with the phenomenon
of internal rupture, in which a hole forms in the interior of a solid body which contains no
hole in the undeformed state. An alternative physical interpretation for such problems in
terms of the growth of a pre-existing micro-void is given in Ref. [2]. The purpose of the
present note is to analyze a corresponding bifurcation problem within the context of
plasticity theory.

We consider an incompressible solid sphere under symmetric, monotonic increasing,
tensile dead load p. The constitutive relation describing the material behavior is taken to
be a generalization of J,-flow to finite deformations. One solution to this problem, for all
values of p, corresponds to a homogeneous state in which the sphere remains undeformed
but stressed. However, for a certain critical range of p, one has in addition, a second possible
configuration involving an internal spherical cavity. An explicit expression for the critical
load p.. at which the cavity is initiated is obtained (see eqn (14)). It is important to note
that this critical 1oad is given automatically by the analysis and does not involve any ad hoc
assumptions. The relation between applied load and cavity radius for subsequent cavity
growth is also established (see eqn (13)).

It is worth pointing out that the bifurcation considered here is inherently associated
with the kinematic nonlinearity. When the present problem is examined using classical
infinitesimal strain plasticity theory, one finds through a formal calculation (see Ref. [3])
that p is given by

=2 %

3 0 &

where ¢ = 6(¢) describes the stress—strain relation of the material in monotonic uni-axial
tension. Under usual conditions, [6(c) = O(e) as e —» 0, 6(¢) = O(¢") as ¢ — 0, n > 0], the
above integral is clearly unbounded and so bifurcation is not predicted by the infinitesimal
theory at any finite load.
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2. FORMULATION AND SOLUTION

Consider a solid sphere of radius A4, subjected to a monotonically increasing radial
tension (dead load), p(2), applied to its surface R = 4. In view of symmetry, the resulting
deformation of the sphere is described by

r=r(R), 0=0© and ¢=0, r(O+,0)=0 (1)

where (r, 0, ¢) are the current spherical polar coordinates of the point which, in the unde-
formed configuration, was located at (R, ©,®). If the material is assumed to be incom-
pressible, the deformation gradient F obeys det F = 1. For deformation (1), this implies
r’dr/oR = R?, which when integrated gives

r=r(R)={R+30}"?, (=0 ()

where ¢(1) is to be determined. If it is found that ¢(f) = 0, eqn (2) implies that the body
remains a solid sphere in the current configuration. On the other hand, if ¢(¢) is found to
be positive (i.e. r(0+,¢) > 0), there is a cavity of radius c centered at the origin in the
current configuration.

From eqns (1) and (2), the non-vanishing components of the Eulerian strain-rate
tensor are found to be

D, = =2fr, Dy=Dy =#r 3)

where the dot denotes the Lagrangian time derivative. In view of symmetry, and assuming
the material to be isotropic, the non-zero components of the (Cauchy) true stress tensor
are the radial stress o,(r, t) and the hoop stresses g,(r, £) = 04(r, ). The prescribed dead load
boundary condition on the surface of the sphere requires that

o,(a, ) = p(1) (4/a)’ @)

where a = r(4, 1) = {A*+¢’} " represents the deformed outer radius.
The constitutive relation for the elastic-plastic material is taken to be a generalization
of J-flow theory to finite deformations (see e.g. Ref. [4])

D= (3E/2)§+A(3a,/2)s'P (.)S. (5)

Here S is the deviatoric Cauchy stress, o is the effective Cauchy stress ; A is a loading
coefficient ; ¢,(*) is a given constitutive function representing the effective plastic logaritlémic

strainv. The Jaumann (co-rotational) rate of the Cauchy stress deviator is denoted by S, so

that S = $—-0QS+SQ where Q is the spin-tensor. In the case of uni-axial tension, the
relation between true stress ¢ and the logarithmic strain ¢, in monotonic loading, can be
obtained from eqn (5) as ¢ = é(0) = o/E+¢,(0). We assume this relation to be invertible
so that we may write the stress—strain relation in uni-axial tension as either

=4(¢) or &=E(o). (6)

v
In the present problem, £ vanishes, and thus S = S. Also, ¢, = g,—0,. Equations (5)
and (6), under conditions of loading (A = 1), yield

é(0) =2Flr, 0.=0p—0,. @)

On using eqns (1), we may integrate eqns (7) with respect to the parameter 7 to obtain
é(c.) = 2In (r/R). Using eqns (6) to invert this gives
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Fig. 1. Schematic graph showing variation of cavity radius ¢ vs applied load p.

0. = 6{2 In (/R)}. ®)

Finally, in the absence of body forces, the equilibrium equations reduce to the single
equation

= —2-2=0. ©)

Thus, the problem to be solved is the following : we wish to findt a,(r,f) and c(¢) 2 0 such

that the field equations, eqns (2), (8), and (9), and boundary condition (4) hold. In addition,
if ¢(¢) > 0 it is also required that

a.(c,)=0, (10)

This stipulates that when a hole appears at the origin, it must be traction free.

First, it is readily shown that, for all values of p = 0, one solution to the foregoing
problem is

o (r,)=p@), =0 (1)

This corresponds to a homogeneous state of deformation r = (R, f) = R, with resulting
stresses 0, = 65 = g, = p(1).

Next we seek a solution for which c¢(¢) > 0. Combining eqns (2), (8) and (9), integrating

with respect to r, using boundary condition (4), and employing a change of variables yields

g, (r.t) =p<—)2_J‘2ln(r/R)____&___ de R=(r'=c%)'"’. (12)
Y a 2@ €Xp 3¢/2)—1 "

On enforcing the remaining boundary condition (10), one is led to

P= <A> Lnn(u/A)CXp(3£/2)—l de, a=(4+c)". (13)

Thus, if for a given value of p, eqn (13) can be solved for a positive root ¢, then this c,
together with eqn (12), provides a solution to the problem at hand.

It is readily shown that under the usual constitutive conditions, [¢(e) = O(¢) as ¢ — 0,
o(e) =0 ase—»o0,n 2 0], the integral in eqn (13) is bounded for all a > A. Therefore,
there exists a value of pressure p(>0) corresponding to each ¢ > 0. A schematic graph of

p vs c is shown in Fig. 1. The critical load p., at which the cavity is initiated is found by
letting ¢ —» 0+ ineqn (12), i.e.

tThe remaining physical quantities can be immediately found thereafter from equs (2), (9) and
0y =0y =010,
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_ J LA 14)t
Pa = o exp (3g/2)—1 & (9

As noted previously, the integral in eqn (14) is bounded and so, the cavity is initiated at a
finite value of load.

3. DISCUSSION

For all values of the prescribed radial dead load p one possible configuration is that
in which the sphere remains solid (see eqns (11)). On the other hand, for a certain range of
pone has, in addition, a second possible configuration involving an internal spherical cavity.
Equation (14) gives the critical value of the load, p.,, at which a cavity may initiate.

It is necessary to examine the stability of these two possible configurations in order to
determine whether the homogeneous solution will in fact bifurcate, at p = p,,, into the one
involving a cavity.

To carry out this stability analysis, we make use of an energy criterion developed by
Hill[ 5] and Petryk[6] for quasi-static deformations of general elastic—plastic solids occu-
pying the domain V and subject to dead load tractions on its boundary S. Thus we consider

the energy functional
E(v,1) = f {J S5V dV—J v, dS} dr (15)
0 4 N

defined for all kinematically admissible velocity fields v, where s;; denote the components
of the nominal stress tensor and ¢, the components of the nominal traction vector. A Taylor
expansion in eqn (15) yields

E(v,t406t) = E(t)+ E 0t + E,(81)*+0(81)> as 6t—0 (16)
where
dF
E= (17)
1 d’E 1dE,
Er=sqr=3a (18)

The equilibrium configuration is found by setting

5
I
(=)

(19)
and this configuration is stable[5, 6] if
E,>0 when E,=0. (20)

For the problem of concern in this paper, we see that

t Note that the formula for p., according to the small strain theory (sce Introduction) may be obtained
formally by replacing the exponential in eqn (14) by the first two terms in its Taylor expansion about ¢ = 0.
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El = j (f;‘jD,’j dV—J 1 dS (21)
¥ N
= j o, dV—-J e, dS 22)
4 AY
where g, and £ are given by eqns (8) and (7), respectively. Thus we find that
" é(c) AV
=4 254 I . A

£ e C[Ln(am exp (3¢/2)—1 de p(g)] (23)

and so by eqn (19) there are two equilibrium configurations, namely that corresponding to
¢ = 0 (homogeneous solution) and that corresponding to

P AN 6(e) _ e
p=p(c) = (A) LSD(M xp Ge/2) =1 de, a=(A4*+c)". (24)

These are, of course, the same equilibrium configurations found previously.
It is readily verified that, for the homogeneous solution, E, = 0. However, for the
bifurcated solution, it can be shown on using eqns (23) and (24) that

2nclé?

b= xomy?

(€) 2%

and so the bifurcated solution is stable provided jp’{c¢) > 0.

Figure 1 shows schematically, a graph of the cavity radius ¢ vs the applied load p. The
bold horizontal line coinciding with the positive p-axis corresponds to the homogeneous
solution. The curves emanating from (p.,, 0} correspond to a bifurcated solution involving
a cavity. If such a curve comes off to the right, the bifurcated solution is locally stable and
so the sphere would indeed develop an internal cavity at p = p,,. Conversely, if bifurcation
to the left occurs, the solution is locally unstable and the sphere remains solid.

On using a Taylor expansion near p,,, eqn (13) yields

2 2
P =P+ 3 ;3 (/)Cr — ~f)+()((~3) as ¢-0 (26)

where E = ¢°(0) is Young’s modulus. Thus when p,, > 2E/3, the slope of the curve at (p,, 0)
is positive and so bifurcation to the right occurs. On the other hand, when p., < 2E/3, the
slope is negative. Consequently a void will actually appear at p = p, only if p., > 2E/3.

Of course, the load level at which stable bifurcation is predicted here is unreasonably
large. This feature is commonly encountered in bifurcation analyses employing classical
flow theories of plasticity. It may be possible to use more elaborate constitutive models or
to include the effect of a pre-existing stress concentrator (such as an inclusion) in order to
obtain more realistic values for the critical load.
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